About 60 percent of the world’s population resides in areas that are proneto hurricanes or cyclones; researchers find that if a hurricane’s path carries it over large areas of fresh water, it will potentially intensify 50 percent faster than those that do not pass over such regions, meaning it has greater potential to become a stronger storm and be more devastating
If a hurricane’s path carries it over large areas of fresh water, it will potentially intensify 50 percent faster than those that do not pass over such regions, meaning it has greater potential to become a stronger storm and be more devastating, according to a study co-written by a group of researchers at Texas A&M University.
A Texas A&M release reports that Ping Chang, professor of oceanography and atmospheric sciences and director of the Texas Center for Climate Studies, along with his former student, Karthik Balaguru, now at the Department of Energy’s Pacific Northwest National Laboratory, are the lead authors of a paper in the current issue of the Proceedings of the National Academy of Sciences.
Their findings could benefit weather experts as they try to predict the path and strength of a hurricane, noting that about 60 percent of the world’s population resides in areas that are prone to hurricanes or cyclones.
Chang and Balaguru and their colleagues examined Tropical Cyclones for the decade 1998-2007, which includes about 587 storms, paying particular attention to Hurricane Omar. Omar was a Category 4 hurricane that formed in 2008 and eventually caused about $80 million in damages in the south Caribbean area.
They analyzed data from the oceanic region under the storm, including the salt and temperature structure of the water and other factors that played a part in the storm’s intensity.
“We tested how the intensity of the storm and others increased over a 36-hour period,” Chang explains.
“We were looking for indications that the storm increased in intensity or weakened and compared it to other storms. This is near where the Amazon and Orinoco Rivers flow into the Atlantic Ocean, and there are immense amounts of fresh water in the region. We found that as a storm enters an area of freshwater, it can intensify 50 percent faster on average over a period of thirty-six hours when compared to storms that do not pass over such regions.”
The researchers believe their results could help in predicting a hurricane’s strength as it nears large river systems that flow into oceans, such as the Amazon in the Atlantic, the Ganges in the Indian Ocean or even the Mississippi River into the Gulf of Mexico.
No comments:
Post a Comment